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A note on the use of residuals for detecting an outlier in 
linear regression 

BY AJIT C. TAMHANE 
Department of Industrial Engtneertng and Management Sciences, Northwestern University, 

Evanston, Illinois, U.S.A. 

SUMMARY 

Consider the usual linear regression model y = XfB + e, where the vector E has E(e) = 0, 
COV (E) = U2 V, where V is known. Let e = y-y be the least squares residual vector. It is 
shown that a test based on the transformed residual vector d* = V' e has, in the class of 
linear transformations of e, certain optimal power properties for detecting the presence 
of a single outlier when the label of the outlier observation is unknown. The outlier model 
considered here is that of shift in location. 

Some key words: Linear regression; Outlier; Power; Residual. 

Consider the usual full rank linear regression model 

y = X#+8, 

where y is an n x 1 vector of dependent variables, X is an n x r matrix of nonstochastic 
regressors, with r < n, ,B is an r x 1 vector of unknown parameters and E is an n x 1 vector 
of random errors with E(e) = 0 and cov (E) = U2 V, where V is a known symmetric 
positive-definite matrix and a2 is an unknown positive scalar. 

The least squares residual vector e is given by 

e = y-y = y-X, := {I-X(X'V-'X)-1X'V'1}y. 

Standardized residuals zi = {ei/1/var (ei)} are often used to detect outlier observations or 
gross errors. In this note we show that the transformed residual vector V'- e has certain 
optimal power properties for detecting a single outlier when the experimenter is unaware 
that there is exactly one outlier present. Thus the usual tests based on e are less powerful 
for this situation. 

To avoid the complicated distribution problems associated with studentized residuals 
and obtain the power results in an uncluttered and distribution-free manner, we shall 
assume that a2 is known and hence can be taken to be unity. 

We consider the class of all linearly transformed residual vectors d = Ae, where A is an 
n x n nonsingular, nonrandom matrix. The outlier detection procedure will be as follows. 
Define a test vector z based on d by 

Zi = di/'/var(di) (i = 1, ...,n). (1) 

Then declare the ith observation an outlier if I zi > k, where k is a suitably chosen 
positive constant. 

We consider an outlier model in which E(ei) $ 0 for some i (i = 1, ..., n), where the label 
i of the outlier observation is, of course, unknown to the experimenter. Without loss of 
generality we may take the nth observation to be an outlier. Thus let E(E) = 6, where 
Az 0 but hil = .. = = . = = 0. Under this assumption we define an optimal test vector 
z,or equivalently the corresponding d* since z* and d* are related by (1), for detecting 
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the outlier as follows: z*, or equivalently the corresponding d*, is said to be an optimal 
test vector for the test zi > k for detecting a single outlier if for all k > 0, 

pr (I4z* > k) > pr(Izzn > k) (2) 
for all z, 

pr(z>k)>pr(IzIj > k) (i =,... n-1), (3) 
with a strict inequality in (2) for at least some z. 

Thus z* has the property that the correct observation is declared an outlier with the 
highest possible probability. Preparatory to stating the main result we introduce some 
additional notation: let P be an n x n nonsingular matrix such that 

P'P= V-, B'=AP-', M= I-PX(X'V-Xy)-'X'P', 

where I is an n x n identity matrix. Then it is easy to show that E(d) = B'MP5, and 
cov (d) = B'MB = C, say. Also write yj = E(zi) = (B'MP6)i/1lcii, where cii is the ith 
diagonal entry of C. Now we state our main result. 

THEOREM. If for fixed k > 0, pr ( I Zi I > k) is an increastng function of 1 7 i I for i = 1, ...,n 
then the optimal test vector for detecting a single outlier is given by d* = V e, that is 
A* = V-1. 

Note that the assumption that pr (zi > k) is an increasing function of 1 i I (i = 1, ..., n) 
is true, e.g. under the normality assumption for ?. 

Proof. Let Q = B- 1 P and let pi, qi, bi and ci be the ith column vectors of P, Q, B, and 
C respectively. Then for i = 1, ..., n 

(CQ6)i bn I q bn iMP 
v (bi Mbi) -(b Mbi) V(b Mbi) 

when 1=...= bn-1 = 0 and bn 0. Next 

A*= V-1 - B* = P-1 V-1 = P,-'PP= P, Q* B*-1P =. 

Therefore again for i = 1, ..., n 

* _ ci* qn* _____ __ 
= (P MPi) / (Pi MPi) -/ (P MPi) 

To show (2) it suffices to show that 17* I ) I y,n 1, that is 

8/(n Mn)> bn MPn l/(bn Mb) 

which follows by the Cauchy-Schwarz inequality. Next, to show (3) it suffices to show 
that 1y7*I > 1y*'I for 1 A i< n-1, that is 

N/ (Pn' MP n) > I P'i MP n I/(P'i MP i) I 

which also follows by the Cauchy-Schwarz inequality; the strict inequality holds because 
P is nonsingular. 

An obvious corollary is that if V is a diagonal matrix, then any d = Ae gives an 
optimal test vector if A is diagonal. 
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