Biometrika Trust

A Note on the Use of Residuals for Detecting an Outlier in Linear Regression Author(s): Ajit C. Tamhane Source: *Biometrika*, Vol. 69, No. 2 (Aug., 1982), pp. 488-489 Published by: <u>Biometrika Trust</u> Stable URL: <u>http://www.jstor.org/stable/2335429</u> Accessed: 22/10/2010 10:16

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=bio.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika.

Biometrika (1982), **69**, 2, pp. 488–9 Printed in Great Britain

A note on the use of residuals for detecting an outlier in linear regression

By AJIT C. TAMHANE

Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois, U.S.A.

SUMMARY

Consider the usual linear regression model $y = X\beta + \varepsilon$, where the vector ε has $E(\varepsilon) = 0$, cov (ε) = $\sigma^2 V$, where V is known. Let $e = y - \hat{y}$ be the least squares residual vector. It is shown that a test based on the transformed residual vector $d^* = V^{-1} e$ has, in the class of linear transformations of e, certain optimal power properties for detecting the presence of a single outlier when the label of the outlier observation is unknown. The outlier model considered here is that of shift in location.

Some key words: Linear regression; Outlier; Power; Residual.

Consider the usual full rank linear regression model

$$y = X\beta + \varepsilon$$

where y is an $n \times 1$ vector of dependent variables, X is an $n \times r$ matrix of nonstochastic regressors, with $r \leq n$, β is an $r \times 1$ vector of unknown parameters and ε is an $n \times 1$ vector of random errors with $E(\varepsilon) = 0$ and $\operatorname{cov}(\varepsilon) = \sigma^2 V$, where V is a known symmetric positive-definite matrix and σ^2 is an unknown positive scalar.

The least squares residual vector e is given by

$$e = y - \hat{y} = y - X\hat{\beta} = \{I - X(X'V^{-1}X)^{-1}X'V^{-1}\}y.$$

Standardized residuals $z_i = \{e_i/\sqrt{\text{var}(e_i)}\}\$ are often used to detect outlier observations or gross errors. In this note we show that the transformed residual vector $V^{-1}e$ has certain optimal power properties for detecting a single outlier when the experimenter is unaware that there is exactly one outlier present. Thus the usual tests based on e are less powerful for this situation.

To avoid the complicated distribution problems associated with studentized residuals and obtain the power results in an uncluttered and distribution-free manner, we shall assume that σ^2 is known and hence can be taken to be unity.

We consider the class of all linearly transformed residual vectors d = Ae, where A is an $n \times n$ nonsingular, nonrandom matrix. The outlier detection procedure will be as follows. Define a test vector z based on d by

$$z_i = d_i / \sqrt{\operatorname{var}(d_i)}$$
 $(i = 1, ..., n).$ (1)

Then declare the *i*th observation an outlier if $|z_i| > k$, where k is a suitably chosen positive constant.

We consider an outlier model in which $E(\varepsilon_i) \neq 0$ for some i (i = 1, ..., n), where the label i of the outlier observation is, of course, unknown to the experimenter. Without loss of generality we may take the *n*th observation to be an outlier. Thus let $E(\varepsilon) = \delta$, where $\delta_n \neq 0$ but $\delta_1 = \ldots = \delta_{n-1} = 0$. Under this assumption we define an optimal test vector z^* , or equivalently the corresponding d^* since z^* and d^* are related by (1), for detecting

Miscellanea

the outlier as follows: z^* , or equivalently the corresponding d^* , is said to be an optimal test vector for the test $|z_i| > k$ for detecting a single outlier if for all k > 0,

$$\operatorname{pr}\left(\left|z_{n}^{*}\right| > k\right) \ge \operatorname{pr}\left(\left|z_{n}\right| > k\right) \tag{2}$$

for all z,

$$\operatorname{pr}(|z_n^*| > k) > \operatorname{pr}(|z_i^*| > k) \quad (i = 1, ..., n-1),$$
(3)

with a strict inequality in (2) for at least some z.

Thus z^* has the property that the correct observation is declared an outlier with the highest possible probability. Preparatory to stating the main result we introduce some additional notation: let P be an $n \times n$ nonsingular matrix such that

$$P'P = V^{-1}, \quad B' = AP^{-1}, \quad M = I - PX(X'V^{-1}X)^{-1}X'P',$$

where I is an $n \times n$ identity matrix. Then it is easy to show that $E(d) = B'MP\delta$, and $\operatorname{cov}(d) = B'MB = C$, say. Also write $\gamma_i = E(z_i) = (B'MP\delta)_i/\sqrt{c_{ii}}$, where c_{ii} is the *i*th diagonal entry of C. Now we state our main result.

THEOREM. If for fixed k > 0, pr $(|z_i| > k)$ is an increasing function of $|\gamma_i|$ for i = 1, ..., n, then the optimal test vector for detecting a single outlier is given by $d^* = V^{-1}e$, that is $A^* = V^{-1}$.

Note that the assumption that $pr(z_i > k)$ is an increasing function of $|\gamma_i|$ (i = 1, ..., n) is true, e.g. under the normality assumption for ε .

Proof. Let $Q = B^{-1}P$ and let p_i , q_i , b_i and c_i be the *i*th column vectors of P, Q, B, and C respectively. Then for i = 1, ..., n

$$\gamma_i = \frac{(CQ\delta)_i}{\sqrt{(b'_i M b_i)}} = \frac{\delta_n c'_i q_n}{\sqrt{(b'_i M b_i)}} = \frac{\delta_n b'_i M p_n}{\sqrt{(b'_i M b_i)}}$$

when $\delta_1 = \ldots = \delta_{n-1} = 0$ and $\delta_n \neq 0$. Next

$$A^* = V^{-1} \Rightarrow B^* = P'^{-1} V^{-1} = P'^{-1} P' P = P, \quad Q^* = B^{*-1} P = I.$$

Therefore again for i = 1, ..., n

$$\gamma_i^* = \frac{\delta_n c_i^{*'} q_n^*}{\sqrt{(p_i' M p_i)}} = \frac{\delta_n c_{in}^*}{\sqrt{(p_i' M p_i)}} = \frac{\delta_n p_i' M p_n}{\sqrt{(p_i' M p_i)}}$$

To show (2) it suffices to show that $|\gamma_n^*| \ge |\gamma_n|$, that is

$$\sqrt{(p_n' M p_n)} \ge |b_n' M p_n| / \sqrt{(b_n' M b_n)}$$

which follows by the Cauchy–Schwarz inequality. Next, to show (3) it suffices to show that $|\gamma_n^*| > |\gamma_i^*|$ for $1 \le i \le n-1$, that is

$$\sqrt{(p_n' M p_n)} > |p_i' M p_n| / \sqrt{(p_i' M p_i)},$$

which also follows by the Cauchy–Schwarz inequality; the strict inequality holds because P is nonsingular.

An obvious corollary is that if V is a diagonal matrix, then any d = Ae gives an optimal test vector if A is diagonal.

[Received July 1981. Revised September 1981]

489